Low frequency magnetization dynamics in thin films

Logan Bishop-Van Horn, CCMR REU, Ralph Group

- Electronics
 - Charge used to manipulate electrons
 - Charge current \rightarrow heat dissipation
- Spintronics
 - Spin used to manipulate electrons
 - Non-volatile
 - Higher speed, lower dissipation (efficient)
- Objectives in spintronics
 - Generate/transport spin currents
 - Manipulate spins/magnetization
 - Detect spins

Spin Orbit Torques

- Spin Hall Effect:
 - Conversion of charge current to transverse spin current
 - Figure of merit: spin Hall angle, $\Theta_{SH} = J_s/J_c$
- Spin Transfer Torque:
 - ▶ Injection of spin polarized current into magnetic material → transfer of (spin) angular momentum → spin transfer torque τ_{ST} applied to magnetization vector
- Additional torque *τ*_H caused by Oersted field *H*_{RF} due to rf current¹
- Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation
- Macrospin approximation

¹Image ref: Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. (Science: 336 (2012). (2012).

ST-FMR

Spin transfer torque-driven ferromagnetic resonance

- Inject rf spin current into magnetic layer using spin Hall metal layer
- Excite resonant precession of the magnetization due to $\tau_{\rm ST}$ and $\tau_{\rm H}$
- Kittel resonance condition

ST-FMR

- $I_{\rm RF}$ mixes with rf resistance oscillation due to AMR \rightarrow dc voltage $V_{\rm mix}$
- $V_{\rm mix}$: Theory predicts symmetric part from $\tau_{\rm ST}$ and anti-symmetric part from $\tau_{\rm H}$

 Extract Θ_{SH}, α, M_{eff} from Lorentzian fits

Logan BVH (CCMR REU, Ralph Group)

Simulations

MuMax3: GPU-accelerated micromagnetics

- Goal: understand low frequency (< 5GHz) ST-FMR behavior
- **Model**: thin magnetic film with in-plane rf charge current, Oersted field, in-plane external field, and injected transverse spin current
- Implementation: MuMax3 micromagnetics²+ MuCloud (MuMax3 on GPUs in the cloud)³
- Analysis: Calculate dc mixing signal and perform Lorentzian fitting

²The design and verification of MuMax3. AIP Advances, **4** 107133 (2014).

³GPU-accelerated micromagnetic simulations using cloud computing. J. Magn. Magn. Mater., 401 (2016). 🚈 👘 🔿 🔍

Simulation Results

Low frequency trends in Θ_{SH}

- Sample dimensions play an important role
 - Competing effects?
 - \blacktriangleright Θ_{SH} is suppressed and then diverges in thick samples

Logan BVH (CCMR REU, Ralph Group)

Simulation Results

Spatial variation in magnetization⁴: $10\mu m imes 1\mu m imes 6nm$ Py, 2.4GHz

MuMax3 ST-FMR

⁴Visualization created using MuView2: http://grahamrow.github.io/Muview2/∢ □ → ∢ ♂ → ∢ ≥ →

Simulation Results

Spatial variation in magnetization

Conclusion/Future Work

Conclusion:

- Simulation tools:
 - ST-FMR analysis
 - Phase/amplitude relative to rf current
 - Phase/amplitude between regions
 - Phase/amplitude between regions and samples
 - Visualization of results
- Clarify ST-FMR results
- Link to results from spatially-resolved measurement methods

Future Work:

- Compare to other experimental tehcniques
- Further explore effects of sample dimensions

Acknowledgments

and Questions

• Ralph group:

- Neal Reynolds
- Samuel Brantley
- Dr. Ralph

CCMR

ONF

• NSF MRSEC & REU Programs

★ ∃ >